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The research described in this report further explores the application of the Unified 

Retrieval (UR) approach developed by Isaacs and Moncet (Isaacs, 1989; Moncet et al., 

1996). The objectives of this research effort are designed to bring the UR approach closer to 

operational implementation using DMSP sensors. The tasks from the statement of work are 

outlined below. 

Task 1 - Enhancement of Unified Retrieval with Implementation of Multi-sensor Cloud 

Analysis Algorithms 

The main objective of the proposed study is to investigate the complementary 

information provided by microwave and infrared sensors in order to enhance both the 

microwave retrieval and the current cloud analysis. This task will investigate and assess the 

impact of incorporating cloud horizontal and vertical spatial distribution information on the 

performance and accuracy of simultaneous physical retrievals of atmospheric profiles from 

microwave sensors. 

Task 2 - Retrieval of Ice Cloud Properties 

Explore additional attributes of the microwave measurements, particularly related to 

ice clouds, to investigate the possibility of identifying multi-layer clouds from simultaneous 

microwave, visible and infrared data, and to provide infrared emission properties needed for 

threshold-based cloud detection. We will also apply the UR approach to DMSP data to 

provide the basis for screening out cases where the infrared/visible derived low cloud 

properties are uncertain and to assess ability to characterize the vertical structure of multi- 

layer clouds. 



Task 3 - Predicting Infrared Emission Properties over Land Using Microwave Data 

Investigate the feasibility of predicting infrared emission properties using the 

microwave data. Assess if this information could be used to enhance low cloud and thin high 

cloud identification in totally overcast conditions especially at night. This task will include 

deriving empirical relationships between microwave and infrared surface emission based on 

dependent clear data sets, and performing exploratory cloud analyses using both the surface 

temperature data from the current surface temperature data base and the microwave derived 

surface emission properties. 

Task 4 - Retrievals over Land - Snow and Ice Backgrounds 

Address the application of the UR algorithm to land and to snow/ice backgrounds. 

This task will assess the algorithm's capability using new data collected over the Northern 

Hemisphere in the winter. 



Introduction 

Current atmospheric remote sensing systems are limited primarily by the available 

hardware technology. Operational IR satellite sounders use broadband radiometers 

supplemented by microwave sounders in cloudy regions with only a limited number of 

channels. As technology evolves and with the prospect of future advanced technology high 

spectral resolution sounders such as AIRS or the EUMETS AT Interferometer Thermal 

Sounder (ITS), it is likely that a greater emphasis will be put on the processing algorithms. In 

particular, the accuracy achievable with any system depends in large part on the ability to 

separate the contributions of cloud/aerosols and surface properties from that of the 

atmosphere, the largest natural sources of "noise" for atmospheric temperature and moisture 

retrievals. Sounding (atmospheric profiles) and imaging (cloud, surface properties) 

parameters are traditionally treated separately using analysis methods that are fundamentally 

different. While physical algorithms that attempt to model the physics of atmospheric 

radiation are commonly employed for extracting temperature and water vapor profiles from 

infrared measurements, classification type methods are the most popular approach for clouds 

and surface properties, both in the microwave and infrared/visible. Even for soundings, the 

microwave community relies heavily on regression type approaches to process the sounding 

information. The consequences are a limited capability to properly treat cloud and surface 

emissivity effects and a domain of application for many parameters effectively limited to 

benign ocean surface backgrounds. 

In light of these considerations, it is anticipated that a combination of sounding and 

imaging functions is potentially quite useful. For instance, cloud properties can be used to 

correct the sounding information and similarly sounding information can be used in the cloud 



analysis to provide better estimates of cloud layers and cloud top height. Similar benefits 

may be expected by offering a consistent treatment of the surface emissivity. Fidelity in 

surface emissivity retrievals potentially provides more accurate retrieval of near surface 

temperature and moisture and CLW. It also insures better depiction of the spatial 

distribution of these near surface meteorological fields against backgrounds with spatially 

variable radiometric properties. Finally, the surface emissivity retrievals themselves contain a 

wealth of information on precisely those surface properties (surface type, vegetation, soil 

moisture, snow and ice properties, etc.) sought by imaging algorithms with the added 

advantage that atmospheric "effects" have been accounted for within the context of the 

overall retrieval process. 

To accomplish unification of the sounding and imaging retrieval functions as 

described above, requires that the formalism used for the inversion be flexible enough to 

treat information from different sensor types, i.e. sounders and imagers. The Unified 

Retrieval (UR) algorithm described here is a general nonlinear physical retrieval algorithm 

for the simultaneous retrieval of temperature profiles, water vapor profiles, cloud properties 

and, surface temperature and emissivity from multi-sensor platforms. At this stage of 

development, the UR algorithm makes use of the microwave sounding and imaging sensor 

data that are the primary meteorological sensors aboard the DMSP 5D-2 spacecraft. In 

overcast situations, microwave sensors become the primary source of information, i.e. the 

retrieval performance in these cases is controlled by the microwave algorithm. Although the 

concept is demonstrated for the current DMSP microwave sensor suite as well as AMSU-A, 

the domain of applicability of the algorithm includes DMSP 5D-3 (OLS-SSMIS) and 

infrared/microwave sounder suites (such as HIRS/AMSU aboard the TIROS KLM 

spacecraft). It is also applicable to potential future sensors suites aboard NPOESS platforms. 



Use of electro-optical (EO) (i.e. infrared and visible) cloud imager data from GOES-8 

sounder is used as well within the present scheme. In general, the primary use of the imaging 

data is in the characterization of the distribution of CLW within the field-of-view of the 

microwave sensors and determination of surface temperatures. As it will be discussed later, 

for large cloud amounts, radiances depend significantly on fractional cloud cover and cloud 

top height. The difficulty in combining the microwave and infrared/visible information is 

that the latter are sensitive to ice clouds that are mostly transparent to the microwave 

radiation. Therefore, one must carefully treat the two types of clouds in the determination of 

the spatial distribution. Another factor that must be considered in merging the two sources of 

information is that cloud analysis greatly benefits from the knowledge of atmospheric 

profiles of moisture and temperature as determined from the microwave measurements. This 

information helps not only in specifying a cloud top altitude but also provides for more 

accurate detection of clouds. 

The UR algorithm is a point-by-point retrieval method, i.e. it is assumed that all 

channels have the same footprint on the ground. To accommodate this approach, the imaging 

information is simply averaged over the larger footprint of the sounding channels. The 

rationale for adopting this kind of approach is the simplicity of implementation and the fact 

that we are mostly interested, at this stage, in the spectral information content of the available 

measurements. Note that the point-by-point approach is non-optimal in the sense that it does 

not take full advantage of the spatial information content available from the DMSP or the 

GOES channels. Also, problems may arise with such a method for parameters that have 

highly nonlinear effects on the observed radiances such as clouds. In this case, the algorithm 

may not converge if the spatial distribution of clouds is not adequately specified, for 

example, using cloud imager data. 



One aspect of the DMSP sensor configuration that must be taken into consideration in 

the context of the proposed algorithm is the mixed scan mode of the DMSP sounder and 

imager combination. While the sounding channels are cross-track scanning, the SSM/I sensor 

uses a conical scanning mode with fixed earth local incidence angle of 53°. The conical 

scanning mode of the SSM/I maintains footprint size and polarization integrity throughout 

the scan, an important feature for the imaging functions of the sensor. The different paths 

viewed by the sounder and imager and the approximately 4 minute time lag between 

collocated measurements may cause difficulties in highly inhomogeneous situations and 

prevent the simultaneous processing of the two sources of information with simple point-by- 

point methods. In most cases, however, it appears that the gain obtained by exploiting the 

synergy between sounding and imaging information exceeds the potential negative impact of 

the differences in the scan mode of the two sensors. In conditions of extreme inhomogeneity, 

as indicated for instance by the spatial variance of the higher frequency imaging channels 

exceeding some threshold value, it is always possible to ignore part of the imaging 

information. 

The method used for the inversion of the satellite-measured radiances is the 

standard maximum likelihood method described by Rodgers (1976). This method belongs to 

a class of constrained least-squares approaches that finds an estimate x of the state vector by 

minimizing a cost function of the form: 

J(x) = (ym-y(x)jw(ym-y(x))+(x-xjr(x-x0), (1) 

where, ym is the vector of observed satellite sensor channel radiometric measurements, y(x) 



are the calculated radiances which are related to the desired atmospheric/surface parameter 

state vector x through the radiative transfer or forward problem model, x0 is a supplied 

independent estimate of the state vector (sometimes called the "first-guess"), and W and T 

are some appropriate weighting matrices. 

The maximum likelihood approach relies on the existence of an a priori estimate with 

Gaussian error statistics to produce a solution that is statistically optimal. Given knowledge 

of the error covariance matrices of the background estimate and the radiometric 

measurements, Sx and Ss, respectively, the maximum likelihood solution is obtained by 

taking W = S~ and T = S^ in the previous expression for the cost function. Under these 

conditions, it can be shown that the solution obtained by minimizing (1) also maximizes the 

conditional probability of x given ym. This is the solution used by Eyre (1989). Note that 

the stability of the maximum likelihood solution is controlled by the covariance of the errors 

in the different elements of the background vector. In that sense, the most appropriate source 

of a priori information is not necessarily one that is close, in an RMS sense, to the true state. 

The nonlinear optimization problem described above is solved using the Gauss- 

Newton iterative procedure. In this case, the background vector is also used as first-guess to 

start the search procedure. At each iteration step, a new solution is obtained by linearizing 

the forward model around the previous guess profile and by finding the new state for which 

the gradient of the cost function vanishes. The solution is updated from xn to xn+l using the 

following relaxation criteria, 

xn+l=x0+SxK
Tn(KnSxK

T
n +SEt[ym -yn+Kn(xn-x0)]   , (2) 



where K„ = öyn /öxn is the gradient of the forward model. The gradient values are 

computed analytically as shown in the Appendix. The iteration process is stopped if one of 

the convergence criteria is met, such that ym -y„ is within the radiance noise value or 

xn+\ ~ xn *s less man some preset threshold. 

Forward Modeling Improvements for Microwave and Infrared Radiative Transfer 

One of the most critical modules for a physical inversion algorithm is the radiative 

transfer (RT) model (or forward model). The RT model is used to accurately compute the 

radiances corresponding to a given atmospheric state and the derivatives (or Jacobian) of the 

radiances with respect to atmospheric and surface parameters for use by the inversion 

module. In addition to providing for an accurate treatment of the atmosphere, the forward 

model must often meet stringent requirements for computation time. The forward model for 

the UR has been improved to better simulate top of the atmosphere radiances for remote 

sensing applications. The newly developed Optimal Spectral Sampling (OSS) technique is 

applied in order to construct a highly accurate, computationally efficient, monochromatic 

forward model. The previously used model (Eyre and Woolf, 1988), parameterized the 

atmospheric transmittance profiles, whereas the current model uses interpolated, weighted 

optical depths to characterize electromagnetic absorption in the atmosphere. Because the 

OSS technique is a monochromatic method, it has an advantage over other forms of fast- 

model parameterizations in that it provides the required derivatives with little extra 

computation time. The OSS model and its application to Microwave and Infrared radiative 

transfer are described in the Appendix. 
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Impact of cloud modeling errors on microwave retrieval performance 

The forward model used in the Unified Retrieval (UR) assumes a homogeneous 

horizontal distribution of cloud liquid water in the scene being viewed. An inhomogeneous 

distribution can cause modeling errors that increase retrieval error. A preliminary assessment 

of the impact on the retrieval performance is performed for a microwave sensor suite similar 

to the DMSP 5D2. 

The forward model considers radiation in two paths, the upwelling or direct path 

radiation and the down-welling or indirect path radiation that is specularly reflected into the 

upwelling path. If a cloud fills different percentages of each path, its radiative impact on the 

top of the atmosphere radiance may be different. Figure 1 shows the possible scenarios when 

cloud water is present in each path. The current forward model assumes that one cloud liquid 

water amount is equally applied in both the upwelling and down-welling paths. 

SENSOR 

clr/cld   cld/cld   cld/clr 

Figure 1. Schematic diagram of a cloud in the down-welling (indirect) and upwelling (direct) 
paths. 

The impact on the simulated brightness temperatures at 183 +/- 3 GHz and 183 +/- 7 

GHz by a cloud with liquid water path of 0.01 mm and various cloud top pressures in the 
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direct, indirect, and both paths is shown in Table 1. These simulations assume 100 % cloud 

cover in each of the designated paths, however the brightness temperatures can be simulated 

for any cloud configuration as a linear combination of the impacts in each of the paths scaled 

by the fractional cloud cover in that path. The retrieval model assumes identical cloud water 

amount in the upwelling and down-welling paths. This assumption can prevent the inversion 

algorithm from converging due to an inability to model the cloud sufficiently well. The 

channels most affected are the low frequency surface viewing channels (e.g. 19 GHz) and the 

183 GHz channels. 

Table 1. Impact on the simulated brightness temperatures of a 0.01mm cloud with 100 % 
cloud coverage in indirect, direct and both paths for 2 water vapor sensing channels. 

pressure (mb) Indirect Direct Both 

With183Ghz±7GHz 
700 0.28 0.12 0.4 
620 0.29 -0.09 0.19 
500 0.32 -0.43 -0.12 

With183Ghz±3GHz 
700 0.003 -0.04 -0.04 
620 0.0035 -0.16 -0.16 
500 0.004 -0.45 -0.45 

The impact on the water vapor profile retrieval performance for a set of ocean 

profiles and four different cloud amounts is shown in Figure 2. The cloud in all cases had a 

top of 500 mb and was only in the direct (upwelling) path. The cloud top pressure was 

assumed known. Figure 2 shows that the water vapor retrieval begins degrade for values of 

cloud water path in excess of 0.05 mm. The impact on the surface skin temperature (Tskin) 

retrieval for the same experiment is also significant (see Table 2). Land cases were also 

examined but because of the lower cloud signal over land the impact of cloud modeling 

errors on the retrieval performance was much less than over the ocean. The results presented 

here indicate that the impact of cloud modeling errors within the retrieval algorithm can be 

12 



significant. This assumption may lead to degraded retrievals in inhomogeneous cloud fields 

especially near cloud edges. 
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Figure 2. Water vapor profile RMS for a set of ocean profiles and four cloud amounts (mm) 
in the direct path only. Cloud tops are at 500 mb. 

Table 2. Tskin RMS for a set of ocean profiles and four cloud amounts in the direct path 
only. Cloud tops are at 500 mb. 

CLW (mm) Tskin RMS (K) 
0.000 0.65 
0.025 0.76 
0.050 0.96 
0.100 1.52 

We are considering several approaches to minimize the impact on the retrieval 

performance. One approach is to adjust the radiometric error covariance matrix so that the 
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effective weight of the channels that are impacted most by the presence of cloud 

inhomogeneities would be reduced. In some situations we might want to eliminate those 

channels altogether. Another approach is to add a second cloud liquid water amount to the set 

of retrieved parameters so that there would be an independent amount for both the indirect 

and direct paths. This would allow for more accurate modeling of the cloud impacts in the 

forward calculation. Yet, another possibility would be to expand the retrieval process from 

its current one-dimensional configuration to three dimensions. All of these approaches will 

be looked at in greater detail in the future. 

Cloud cover prediction using microwave and infrared observations 

The purpose of this sub-task is to utilize coincident microwave and infrared 

observations to better identify cloud cover. The method is based on the difference in 

brightness temperature between the infrared observations and coincident simulated clear sky 

calculations made using profiles of atmospheric temperature and moisture retrieved from the 

microwave observations at coincident locations in space and time. First, a swath of DMSP 

microwave observations are used to simultaneously retrieve the temperature and moisture 

profiles at each SSM/T-2 pixel (-50 km at NADIR). These profiles are then used to calculate 

an infrared clear-sky radiance at each of the eighteen GOES-8 sounder frequencies (see 

Table 3). The differences between these simulated clear-sky brightness temperatures and the 

observed brightness temperatures are histogrammed to find the scene maximum for each 

channel which is then subtracted from the differences to give a set of adjusted brightness 

temperature differences. These adjusted differences are then used as predictors for the visible 

albedo predictand. A neural net was trained using the predictors and predictand for all 

14 



eighteen infrared adjusted brightness temperature differences and twelve longwave and mid 

wave differences (short wave excluded). Multiple linear regression was also evaluated, but 

the neural net was found to be superior in its ability to predict visible albedo. The results 

(Figure 3) show that the visible albedo is well predicted (RMS =1.5) from the eighteen 

adjusted differences and less so when the shortwave is excluded (RMS = 2.6), as would be 

expected. Setting the clear sky albedo threshold at 3%, we see that the infrared adjusted 

differences are able to predict cloud cover quite well as shown in Figure 4 and Figure 5. This 

method should be superior to straight or relative threshold methods since it is based on the 

adjusted differences in brightness temperature and is therefore dependent only on the 

microwave retrieval performance. 

100 

o -a 

CO 

u 

OH 

10 100 

Observed albedo 
1 10 100 

Observed albedo 

Figure 3. Predicted and observed albedos using adjusted brightness temperature differences 
for all 18 GOES-8 sounder channels (A) and using 12 longwave and midwave (no short 
wave) channels (B). 
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Table 3. Channel characteristics of GOES-8 Sounder (courtesy CIMSS). 

Wavelength, jxm 
(Frequency, cm"1) 

Channel NedT (K) Purpose 

14.71(680) 1 1.02 Stratosphere temperature 

14.37(696) 2 0.87 Tropopause temperature 

14.06(711) 3 0.60 Upper-level temperature 

13.96(733) 4 0.40 Mid-level temperature 

13.37(748) 5 0.45 Low-level temperature 

12.66(790) 6 0.20 Precipitable Water 

12.02(832) 7 0.13 Surface temp., moisture 

11.03(907) 8 0.10 Surface temperature 

9.71(1030) 9 0.14 Total ozone 

7.43(1345) 10 0.11 Low-level moisture 

7.02(1425) 11 0.13 Mid-level moisture 

6.51(1535) 12 0.21 Upper-level moisture 

4.57(2188) 13 0.13 Low-level temperature 

4.52(2210) 14 0.13 Mid-level temperature 

4.45(2245) 15 0.16 Upper-level temperature 

4.13(2420) 16 0.10 Boundary-layer temperature 

3.98(2513) 17 0.17 Surface temperature 

3.74(2671) 18 0.10 Surface temp., moisture 

0.94(14367) Cloud 
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Figure 4. Observed and predicted visible albedos for August 22,1995 1038Z using all 
eighteen GOES sounder infrared channels (includes shortwave). 

17 



observed albedo predicted albedo 

Figure 5. Observed and predicted visible albedos for August 22,1995 1038Z without 
shortwave channels. 

Identification of ice clouds 

Ice clouds can easily be identified by cold brightness temperatures in the window 

channels (e.g. channels 6, 7, 8 on the GOES sounder) provided that the clouds are optically 

thick at those frequencies. Since optically thick ice clouds usually occur only in convective 

regions, many optically thin ice clouds would be classified as low (water) clouds using 

window channel brightness temperatures alone. However, using a microwave-based retrieval 

of temperature and moisture in the infrared forward model along with the observed 

18 



brightness temperatures, we are able to identify clouds in the sounder channels that are 

optically thin. The previously mentioned adjusted brightness temperature differences are 

used to identify the presence of optically thin ice clouds. Thresholds are set on two sounder 

channels (3,12) and two window channels (7, 8). If the adjusted brightness temperature 

difference on the sounder channels exceeds 2 K and the adjusted brightness temperature 

difference on the window channels exceeds 2 K then there is an ice cloud present. If the 

adjusted brightness temperature difference on the sounder channels exceeds 2 K and the 

adjusted brightness temperature difference on the window channels exceeds 2 K and is less 

than 21 K (3 km * 7 K/km) then there is an optically thin ice cloud present. The value of 21 

K is subjective, but is taken to be a value (3 km ~ 700 mb) known to be considerably lower 

than the maximum of the sounding channels' weighting functions (see Figure 6, Figure 7). 

The identification of such clouds is shown by the orange shading in the plot (left side) of 

Figure 8. The window channel brightness temperature of the optically thin cloud area is in 

the 271 to 276 K range. From the window channels alone, we would be unable to distinguish 

optically thick low clouds from optically thin high clouds. However, using the MW retrieval 

along with the sounder channels we are able to do so, thereby providing a better estimation 

of cloud top height. 

19 
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Figure 6. Long wave and mid wave temperature weighting functions for GOES 8 sounder 
(courtesy CIMSS, http://cimss.ssec.wisc.edu). 

CIMSS 

Figure 7. Mid wave water vapor weighting functions for GOES 8 sounder (courtesy CIMSS, 
http://cimss.ssec.wisc.edu). 
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Tb(K):  211 216 221 226 231 236 241 246 251 256 261 ::h 286 291 296 

Optically Thin Clouds in Orange Channel 8 Brightness Temperature (K) 

Figure 8. Optically thin cloud identification (left) and channel 8 (window, 907 cm"1) 
brightness temperatures (right). 
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Identification of multi-phase water clouds 

Multi-phase clouds, which may be multi-layered, are found by the coincident 

identification of ice and liquid present at the same location. The ice clouds may be optically 

thin or thick, while the MW retrieval produces coincident cloud liquid water retrievals in 

excess of 0.02 mm. As seen in Figure 9, most of the liquid water in this scene is coincident 

with optically thick ice or low, liquid phase clouds. 

22 



Tb(K):  211 216 221 226 231 236 241 246 251 25- 3 261 ;B' 286 291 296 

Liquid Water Clouds in Red Channel 8 Brightness Temperature (K) 

Figure 9. Multi-phase cloud identification. 

23 



Retrievals over Land Surfaces 

Since surface emissivity as a function of frequency is retrieved simultaneously with 

profiles of temperature and moisture, it is necessary to have a statistically representative 

background mean and covariance for the physical inversion (UR). We have chosen to use 

emissivities retrieved from SSM/I measurements by Prigent, et al. (1997). This database 

contains a global representation of the microwave surface emissivity from 19 GHz to 85 GHz 

during October. Emissivity spectra, randomly selected from this database, are used to 

construct the background mean and covariance. The retrieval of the frequency dependent, 

emissivity state vector simultaneously with the other state vector parameters (temperature 

profile, moisture profile, skin surface temperature, cloud liquid water, and cloud top height) 

is effectively constrained by the statistics derived from the Prigent data. The Prigent 

emissivities are interpolated and extrapolated to the AMSU frequencies for the background 

calculation when appropriate. 

Emissivity background time averaging experiments 

Using the unified retrieval technique at SSM/I frequencies, we have investigated the 

effect of using a time sequence of retrieved emissivities to generate a new background and 

covariance for input into future applications of the UR. In particular, we are exploring the 

improvements on the retrieved skin temperature that may be realized using time-averaged 

emissivities. We have a set of either NOAA-88 sonde points or NWP grid points each with 

an assigned constant emissivity profile. Sixteen independent UR retrievals are executed 

varying the instrument noise or cloud amount and height or both. The variables retrieved are 

skin temperature, emissivity profile, TPW, CLW, and some atmospheric temperature profile 

24 



information. Considering SSM/I over land is most sensitive to emissivity and skin 

temperature we focus on these two parameters. With the first sixteen retrievals we generate 

an average emissivity profile along with a covariance matrix. These are then used in another 

retrieval as the background and covariance. We first looked at 1176 NOAA-88 atmospheric 

profiles with an emissivity profile picked from Prigent's data set of monthly mean 

emissivities. Next, we looked at a set of 176 NWP profiles also with an emissivity profile 

from Prigent. Figure 10 shows the RMS difference between the input and the average of the 

retrieved emissivity and the instantaneous retrieved emissivity for the seven channels for the 

sixteen runs. 

Figure 10. RMS difference between input and averaged (dotted line) and instantaneous 
(solid line) for all seven channels and sixteen runs. Clear sky conditions with varying noise. 

These are for the case of clear sky NOAA-88 profiles only varying instrument noise. 

The averaged emissivities converge to values that in a root-mean-square sense are closer to 
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the truth than the retrieved at any one instance. The RMS difference between the converged 

average and the input is given in column A in Table 4. We perform two more clear sky runs 

with the same noise. The first is like the previous sixteen, emissivity covariance and 

background based upon a global data set. The next uses the background mean and covariance 

based upon the previous sixteen runs. The RMS difference between truth and retrieved for 

the emissivities are also shown in Table 4. Of course column C is very close to column A 

since the covariance is now very tight. The improvement in the retrieved emissivity should 

translate into an improvement in the retrieved skin temperature. This is indeed the case as 

can be seen from Figure 11. The TPW retrieval error is also presented. 

Table 4. RMS difference; A: Between averaged emissivity and true B: Between retrieved 
and true emissivity using a climatological background mean and covariance C: Between 
retrieved and true emissivity using a background mean and covariance derived from previous 
16 runs. For 1176 NOAA-88 profiles clear sky. 

Channel A B C 

19V 0.0114 0.0121 0.0113 

19H 0.0111 0.0119 0.0111 

22V 0.0132 0.0139 0.0132 

37V 0.0117 0.0125 0.0116 

37H 0.0115 0.0125 0.0115 

85V 0.0174 0.0184 0.0174 

85H 0.0195 0.0206 0.0195 
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Figure 11. Difference between retrieved and true TPW and skin temperature verse input 
values. Upper panel: background and covariance generated from Prigent data set. Lower 
panel: background and covariance generated from retrievals. 

Next, we did the same runs but for cloudy conditions. For each point and run we put 

in a cloud with random height and amount (Figure 12). Table 5 shows the RMS difference 

between true averaged retrieved and retrieved for this case. Figure 13 shows the retrievals 

using and not using the background mean and covariance determined from the previous 

sixteen runs. There is a large improvement in the skin temperature retrieval although no 

improvement over the clear sky case. 
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Figure 12. RMS difference between input and averaged (dotted line) and instantaneous 
(solid line) for all seven channels and sixteen runs. Random cloud height and amount with 
varying noise. 

Table 5. Same as Table 4 except cloudy conditions. 

Channel A B C 

19V 0.0114 0.0137 0.0112 

19H 0.0112 0.0143 0.0114 

22V 0.0128 0.0149 0.0127 

37V 0.0118 0.0142 0.0118 

37H 0.0113 0.0171 0.0132 

85V 0.0182 0.0201 0.0184 

85H 0.0222 0.0254 0.0224 
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Figure 13. Difference between retrieved and true TPW, skin temperature and CLW verse 
input values. Upper panels: background and covariance generated from Prigent data set. 
Lower panels: background and covariance generated from retrievals. The CLW retrievals are 
stratified in both 19V emissivity range and TPW range. 
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In the above runs the atmospheric profiles were held constant for each NOAA-88 

point. Only the instrument noise and cloud properties were varies. To look at a more realistic 

situation we did the same exercise on 176 NWP grid points. The data is from 10/1-10/8 in 

1995 for 0Z and 12Z each day. Thus, we have sixteen separate profiles for each grid point 

from the 0Z 10/9 field. Figure 14 shows the RMS difference between input and averaged 

retrieved and instantaneous retrieved for the sixteen times. As with the cases above the 

averaged have a lower RMS than the instantaneous. Next, the retrievals were done using and 

not using the background mean and covariance determined from the previous sixteen runs. 

Table 6 lists the RMS difference between the input and retrieved. Figure 15 shows the 

retrieval error for skin temperature and TPW. There is an improvement in the retrieval of 

both parameters when the time averaged background mean and covariance is used. A 

comparison of monthly mean emissivity at 19H GHz from the UR retrieved and Prigent 

database is shown in Figure 16. This figure shows that the means are in good agreement both 

spatially and in terms of intensity. 
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Figure 14. RMS difference between input and averaged(dotted line) and instantaneous(solid 
line) for all seven channels and sixteen runs. NWP fields 

Table 6. Same as Table 4 except 176 NWP grid points. 

Channel A B C 

19V 0.0104 0.0128 0.0107 

19H 0.0110 0.0132 0.0109 

22V 0.0132 0.0151 0.0135 

37V 0.0114 0.0134 0.0115 

37H 0.0119 0.0137 0.0117 

85V 0.0180 0.0196 0.0181 

85H 0.0212 0.0225 0.0210 
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Surface Air Temperature Retrieval using SSM/I 

Retrievals of the surface skin temperature using SSM/I were compared to the 2m 

temperature reported by NWS shelter boxes for a six day period in October 1995. The 

comparison shows that the RMS difference between the retrieved surface skin temperature 

and the shelter box 2 m air temperature to be about 3 K, with a bias of-0.1 K (see Figure 17). 

Comparison of these same retrievals with those retrieved using the McFarland regression 

type algorithm show fairly good agreement over a broad range of temperature, but significant 

discrepancies exist at both high and low temperatures (see Figure 18). 

RMS= 3.03192 Bios= -0.000834052 

270 2B0 290 
Tskin UR (K) 

Figure 17. Comparison of retrieved surface skin temperature with shelter box 2 m air 
temperature. 
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Figure 18. Comparison of UR and McFarland retrievals. 

Temperature Profile Retrieval over Land/Snow/Ice using AMSU 

Recently the Advanced Microwave Sounding Unit (AMSU) sensor became 

operational on the NOAA-15 polar orbiting satellite. This sensor consists of AMSU-A, a 15 

channel temperature sounder, and AMSU-B, a five channel moisture sounder (see Table 7). 

Due to calibration problems with AMSU-B, only AMSU-A observations are used for the 

work presented here. Atmospheric profile retrievals over land surfaces using microwave 

observations are particularly challenging due to the natural variability of the surface 

emissivity at microwave frequencies. Comparisons of retrieved atmospheric profiles with 

NCEP/NCAR Reanalysis data and radiosonde profiles show favorable agreement. 
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The AMSU data were obtained from the NOAA Satellite Active Archive as level lb 

data and were limb corrected over ocean and land using the coefficients given by Chalfant at 

NOAA NESDIS FPDT (personal communication). This correction reduces the scan line 

dependent errors found in the native data set and makes the limb correction. The native data 

were found to largely unusable without this correction. 

Temperature profiles were retrieved from the AMSU-A data, globally, during the 

month of February 1999. Comparisons of retrieved temperature profiles with radiosonde 

observations over the United States indicate that the retrieval uncertainty (RMS), including 

temporal, spatial, and radiosonde measurement error, is about 3-4 K near the surface. 

Throughout the depth of the troposphere it is at or below 2 K, increasing to 3 to 4 K at the 

tropopause. Retrieval errors using simulated data indicate that the RMS error should be 

approximately 2.5 K near the surface, 1.5 K in the mid-troposphere, and 2 K at the 

tropopause. The additional error incurred in the radiosonde comparison of about 0.5 to 1.5 K 

could be from spatial (volume-point sampling) and temporal differences and/or errors from 

the limb correction. Since radiosonde measurement spacing is insufficient in time and space, 

it is difficult to account for these errors quantitatively. The retrieved surface temperature and 

precipitable water are shown along with the surface map in Figure 20. The retrieved 

precipitable water field clearly depicts the analyzed surface front. A comparison of the 

retrieved temperature at 700 mb with NCEP/NCAR Reanalysis data for February 11,1999 is 

shown in Figure 21. The retrieved emissivity for 23 and 89 GHz is shown for February 4, 

1999, in Figure 22. Regions where emissivities are high at 23 GHz and low at 89 GHz 

probably have snow or ice surfaces. Regions where emissivities at both 23 and 89 GHz are 

low probably have very wet soil or standing water. The corresponding temperature retrievals 

at 700 mb along with the NCEP and radiosonde values are shown in Figure 23. The 
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temperature field further north is shown in Figure 24. The retrieval agrees well with the 

reanalysis and the sondes all the way up to and including Greenland. 

-4-2024 
Temperature (K) 

Figure 19. RMS and bias for retrieval - radiosonde comparison for both acending and 
descending passes over the USA during February 1999 
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Table 7. Advanced Microwave Sounding Unit (AMSU) channel specifications. AMSU-A: 
Channels 1-15, AMSU-B: Channels 16-20. 

Channel 
Number 

Central 
Frequency 

(GHz) 

Side Band 
(GHz) 

Bandwidth 
(MHz) 

Primary Use 

1 23.800 0.0 270 TPW 
2 31.400 0.0 180 CLW 
3 50.300 0.0 180 Temperature 
4 52.800 0.0 400 Temperature 
5 53.596 ±0.115 170 Temperature 
6 54.400 0.0 400 Temperature 
7 54.940 0.0 400 Temperature 
8 55.500 0.0 330 Temperature 
9 57.290 0.0 330 Temperature 
10 57.290 0.217 78 Temperature 
11 57.290 ±0.322 ±0.048 36 Temperature 
12 57.290 ±0.322 ±0.022 16 Temperature 
13 57.290 ±0.322 ±0.010 8 Temperature 
14 57.290 ±0.322 ±0.0045 3 Temperature 
15 89.000 0.0 6000 CLW 
16 89.000 ±0.9 1000 CLW 
17 150.000 ±0.9 1000 Water vapor 
18 183.310 ±1.0 500 Water vapor 
19 183.310 ±3.0 1000 Water vapor 
20 183.310 ±7.0 2000 Water vapor 
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Figure 20. Surface Temperature and Precipitable water retrieval for February 11,1999. 
Dotted line represent surface front as depicted on surface map. 
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Figure 21. Retrieved and NCEP reanalysis temperature at 700 mb. Circles indicate 
radiosonde-measured temperature at 700 mb. 
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Figure 22. Retrieved surface emissivity at 23 and 89 GHz, February 4,1999 
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Figure 23. Retrieved and NCEP reanalysis temperature at 700 mb on February 4,1999. 
Circles indicate radiosonde-measured temperature at 700 mb. 
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Figure 24. Retrieved and NCEP reanalysis temperature at 700 mb on February 4,1999. 
Circles indicate radiosonde-measured temperature at 700 mb. 
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Conclusions 

This report has described the advancements made in the application of the UR 

algorithm. Studies included further investigation in the retrieval of surface emissivity, 

temperature, moisture, and clouds over land surfaces. Additionally, a cloud modeling error 

analysis has been completed. New work included the identification of clouds using 

microwave-based retrievals along with IR observations and the use of AMSU observations to 

retrieve temperature over snow and ice surfaces. 

Retrievals of land surface emissivity simultaneously with temperature, moisture, and 

cloud was shown to agree with that of Prigent in a monthly mean sense. The retrieval of the 

emissivity is sufficiently accurate to allow for the retrieval of other parameters like 

temperature and moisture. However, comparisons with radiosonde measurements near the 

surface indicate that the retrieval error is larger near the surface with emissivity error likely 

contributing to that increased difference. Characterization of the surface emissivity of snow 

and ice surfaces from the Prigent dataset is sufficient for the UR algorithm to retrieve 

reasonable temperature and moisture profiles over the snow and ice as compared to 

radiosonde measurements. Using simulated clear sky infrared radiances with the retrieved 

temperature and moisture profiles from the DMSP suite aboard Fl 1 as input to the forward 

model, we were able to consistently predict the observed visible albedo given the observed 

infrared measurements. Although this study was preliminary and small-scale, the accurate 

prediction of the visible albedo and hence the presence of cloud would very useful for 

aviation safety and tactical aides. Further work demonstrating that these methods work on a 

global scale is necessary. Additional work is also necessary to validate the retrievals over 

land to establish a thorough analysis of the error budget. 
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' APPENDIX 

1     Forward Modeling 

1.1    Radiative Transfer Equations 

1.1.1   Microwave 

The radiative transfer equation (RTE) used in the microwave region treats the atmosphere as a homogeneous, 

plane-parallel, non-scattering medium. The brightness temperature,Äv, at a given frequency vis computed using 

the Rayleigh-Jeans approximation as: 

/^G^ + JG^)^^ 
dp dp (i) 

where G(/?) is the atmospheric temperature at pressure/?, Tv(p,6J is the total transmittance due to molecular 

species and cloud liquid water from pressure/? to space at the satellite viewing angle 6U, Tj(/?,6rf) is the 

transmittance from surface to pressure/? at computational angle 6d, £„is the surface emissivity, and 0c is the 

cosmic radiation term (0C=2.73 K). In the microwave, over both land and ocean, the surface is treated as 

specularly reflective, i.e. 6d = 6u. 

1.1.2   Infrared 

The general form of the RTE in the infrared can be written as: 

K = £v5v(e,K +1 Bv(&(p))^^dp + 2Ts]pv(0obs,e) ]Bv(G(p))*Z^dp 

+pvTsT(ps,esunXvcos(0sun) 

sinOcosOdO 
(2) 

where 5„(0(/?)) is the Planck function emission, F0 v is the intensity of the solar radiation, 6sm is the local solar 

zenith angle and pv is the bi-directional surface solar reflectance. The third term in Equation (3) represents the 

contribution of the reflected downwelling thermal radiation to the observed radiance. 
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A proper consideration of the anisotropy in the downwelling thermal radiance field and surface reflectance 

properties would require replacing the flux integral by a discrete summation over a pre-determined set of 

quadrature angles. 

In practice, because of the non-homogenous nature of the atmosphere and the fact that bi-directional reflectance 

(BRDF) properties of natural land surfaces are poorly known, the usefulness of such a level of sophistication in 

the context of the 1-D retrieval problem is arguable. The following form of RTE is used to address the case of 

specular and Lambertian surfaces: 

K = evBv(e,K+J Bv(e(P))^M4 +(i- e,%\ Bj&psfi&gädp 

+ A/W0il,coS(0 

dp i dp (3) 

where 6d = 6U for specular surfaces and 6d ~ 53° over Lambertian surfaces. The form of treatment adopted in 

the Lambertian case results from the use of a single quadrature angle ("diffusivity" angle) to approximate the 

downward thermal flux. 

The present model is valid over ocean where the specular assumption is a reasonable approximation and densely 

vegetated land surfaces, which BRDF are nearly isotropic. More complex land surface types will be considered 

in the next phase of this project. In particular, land surface types such as sand, snow, senescent vegetation, as 

well as inhomogeneous pixels (e.g. mixture of land and water bodies) may display highly non-Lambertian 

characteristics [Snyder and Wan, 1998]. As a future enhancement to the present algorithm capabilities, we are 

considering performing a separate retrieval of the thermal reflectivity, over land and coastal regions. 

Appropriate constraints will be used to tie the spectral thermal reflectivity to the emissivity as a function of 

geographical location, season, and/or surface/vegetation type. 

1.2    Overview of the OSS Method 

The Optimal Spectral Sampling (OSS) method is a generalized formulation for the forward radiative transfer 

problem that is applicable for any type of instrument configuration from the microwave through the ultraviolet 

regions of the spectrum. With OSS, the radiative transfer is computed at selected wavenumber locations within 

the spectral interval spanned by the instrument function and the results are combined linearly in such a way as 
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to accurately represent the radiance for each instrument channel. To accomplish this, the convolution of the 

monochromatic space-to-level transmittance with the instrument, response function (IRF) is approximated as a 

sum of monochromatic transmittances computed at selected spectral points within the domain spanned by the 

IRF: 

\v = j<t>vTvdv = J,w[TVi       (4) 
Av 

where 0V represents an instrument function which is assumed to vanish to zero outside the interval Av and 

where v, e Av. The optimal selection of the v,. 's and the computation of the weights, w„ is performed off-line 

by comparing the radiances derived using the approximate OSS formulation to those obtained with a reference 

line-by-line (LBL) model. The optimization procedure minimizes the RMS difference between the "exact" and 

approximate radiances calculated for an ensemble of globally representative atmospheric profiles over the full 

range of satellite viewing angles. The following constraints are applied in order to ensure a physical solution: 

w{ >0  and ]£w, = 1       (5) 

The numerical accuracy of the OSS model is pre-selectable and determines the number of points used in 

Equation (12) to approximate the exact radiances in each channel. The line-by-line radiative transfer model 

chosen as a reference in the infrared is the LBLRTM model [Clough et ed., 1992]. LBLRTM is originally based 

on FASCODE and has been extensively validated against atmospheric measurements [Snell et al, 1992]. Figure 

1 and Figure 2 compare the brightness temperatures in AMSU (1 to 15) and MHS (16 to 20) channels obtained 

with the OSS approach and the commonly used "central frequency" approximation with the "exact" calculations 

from Rosenkranz's model. The RMS differences between the models do not include errors due to optical depth 

interpolation. These errors can be made arbitrarily small by increasing the number of entries in the optical depth 

look-up tables. 
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Table 1 shows the number of OSS points used in the modeling of AMSU radiances. The average RMS error is 

0.0135 and the total number of OSS frequencies is 48. Like in the infrared the nominal accuracy of this 

selection is 0.025 K. 

Table 1: Number of Spectral Points Selected in the MW. 

Channel 
Number 

Center Frequency 
(GHz) 

Number of OSS 
Frequencies 

RMS 

1 23.800 1 0.0009 
2 31.400 1 0.0019 
3 50.300 1 0.0060 
4 52.800 3 0.0042 
5 53.596 3 0.0049 
6 54.400 3 0.0016 
7 54.940 3 0.0263 
8 55.500 3 0.0168 
9 57.290 1 0.0188 
10 57.290 3 0.0221 
11 57.290 3 0.0310 
12 57.290 3 0.0290 
13 57.290 3 0.0258 
14 57.290 3 0.0378 
15 89.000 2 0.0006 
16 89.000 2 0.0005 
17 150.000 2 0.0025 
18 183.310 2 0.0164 
19 183.310 3 0.0066 
20 183.310 3 0.0166 
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1.3    Transmittance Model 

To compute transmittance, the OSS model makes use of pre-stored monochromatic layer optical depths for the 

relevant atmospheric gases at the selected wavenumber locations. The gases are split into two groups, those that 

have a fixed molecular amount and those that are variable. Because a single optical depth represents the fixed 

gases this grouping reduces the storage requirements for the optical depth tables. For each species, the optical 

depths are stored at a set of temperatures for each pressure layer used in the discrete radiative transfer model. 

For each layer this temperature range spans the temperatures expected for that layer based on the profiles in the 

TIGR [Chedin et al, 1985] and NOAA-88 atmospheric profile databases. This temperature domain is sampled 

uniformly and the optical depths are stored at 10 temperatures. 

The optical depth tables are calculated using the LBLRTM radiative transfer model along with the molecular 

amounts from the US Standard Atmosphere profile [Anderson et al, 1986]. This model contains state-of-the-art 

physics, including the latest version of the CKD water vapor continuum [Clough et al, 1989]. Because of the 

CKD formulation the method of optical depth calculation must be modified slightly for water vapor, since the 

self-broadened component of the water vapor continuum contains a quadratic dependence on the number 

density. As such the self-broadened component is separated from the water lines and the foreign-broadened 

component of the continuum. Absorption coefficients of water vapor lines and foreign broadened continuum are 

grouped together in one table. A second table contains absorption coefficients of self-broadened water vapor 

continuum. For a given layer each optical depth is linearly interpolated to the layer temperature. The correct 

optical depths for the variable species are then obtained by multiplying the temperature-interpolated optical 

depth by the ratio of the layer amount to the standard amount. This is equivalent to multiplying the species' 

molecular absorption coefficient by the molecular amount, but reduces numerical accuracy problems 

encountered because of the many orders of magnitude difference in the value of the absorption coefficient and 

the molecular amount. Of minimal impact, and thus neglected in the current formulation, is the difference in the 

self-broadened component of the line shape between the standard density used to compute the stored optical 

depths and the actual layer density. 

Total optical depth is computed for each layer / at nadir as: 

( 6 ) 
+*CH4 (PlA) + *Co(Pl> Bl)+ *N2o(PlA ) 
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where % is the optical depth, K is the absorption coefficient, co is the absorber amount, p is the layer pressure and 

9 is the temperature. The current set of optical depths is stored at each monochromatic spectral point for 39 

layers and 10 temperatures. The optical depth tables for the microwave OSS model are structured in much the 

same way as for the IR, with only slight differences because of the nature of the microwave spectrum. The total 

optical depth is computed for each layer / at nadir as: 

A = *m+N2(PlA>a)H2o)+ lH2o(PlA>aH2o) ( 7 ) 

where the variables are defined as in the infrared equation given above. The calculations are done using the 

Rozenkranz model [Rosenkranz, 1995]. The microwave optical depths are tabulated as a function of both 

temperature and water vapor. Simulation studies indicated that 20 temperature and water vapor interpolation 

points are required for accurate OSS representation under a wide variety of atmospheric conditions. Thus for the 

20 AMSU microwave channels the optical depth table occupies 5.99 Mbytes of storage space. 

1.4    Radiance Calculation 

1.4.1    Overview of the Method 

Since the OSS method is a monochromatic approach to the radiative transfer, the gradient of the forward model 

with respect to all relevant atmospheric/surface parameters can be computed efficiently using an analytical 

scheme. Computation of radiances and derivatives with the OSS method uses a generic recursive scheme 

developed for the modeling of upward, downward-looking and limb-viewing instruments and used in 

atmospheric retrievals from CIRRIS [Miller etal, 1999]. 

Figure 3 defines the numbering conventions for the layered atmosphere. T, and T7* denote the transmittances 

from space-to-level and surface-to-level / computed along the upward (u) and downward (d) atmospheric paths, 

defined as: 

^-ij *?****) T, = exp|-2,<sec0ofa| (8) 

and: 

r/ = exp[-E<iSecöJ        (9) 

53 



. level 0 CTOAt 
T1 TJ         'aver 1 

Inval 1 

T2 
layer 2 

IBVRI •> 

TN.2| 

T2 

level N-2 

TN-1 T* 
■N-2 

layer N-1 
l«VBl   N-1 

T                             T*   " 'N                      'N-1 
layer N 

Figure 3: Schematic diagram showing the numbering convention for the atmospheric layers used by OSS, where 

T refers to transmittances, level 0 represents the top of the atmosphere (TO A) and level N the surface. 

Radiance in clear conditions are computed using the following expression derived by discretizing the radiative 

transfer equation as: 

K^^j-r-XjKi+^s^sKs+ii-^XstKi-t^Ki      (io) 
i=l i=l 

where Bv represents the upward and downward Planck emission of the layer/surface and £w is the surface 

emissivity. Derivatives of Rv with respect to constituents concentration or temperature in layer / are obtained by 

differentiating the previous equation: 

cX{        cKl 

N 

I 
i=;+i 

-T,3 + 2(TW-TI)^ +VA + (I-^Z(T;-T*,)B,. 
;=I 

sec# obs 

l-\ 

-ii-esJrXA +(I-£JT„£(T;-T:I)B1. 
i=l 

sec 9, (in 

+^(TH-T,)+(i-£,)r„J(r;-T;-,) 

or, by introducing the two-path attenuation from level / to space,: T,'= (l - f^^T, 
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oR ol, -TM + £ (TM -TJfc +TNesBs +Z(X-X_l)Bi 
i=(+l ax,    ax, 

-TUB, +I(T;-T^)B,. 

t=i 

/-i 

<•=! 
(12) 

+^(T-"T')+^(T/-T-) 

where X; stands for either 6, or cof 

With the exception of the handling of the surface terms, the recursive procedure for the integration of the RTE 

and calculation of the derivatives over a reflective surface is similar to the one used for limb viewing. This 

procedure uses the fact that a perturbation in temperature or constituent concentration in any given layer of the 

atmosphere does not affect the emission in the atmospheric slab comprised between this layer and the observer. 

Therefore, derivatives can be obtained at low cost if the RTE is integrated by adding layers sequentially in the 

direction of the observer. The procedure is more apparent by introducing the quantities^ and £* defined as the 

contribution to the observed radiance of the downward emission (reflected at the surface) from the atmosphere 

above level / and the contribution of the atmosphere below level / plus reflected downward radiation, e.g.: 

*J =t{V-TU)B7 (13) 
;=1 

and 

2/ = X(T„ -T,K + esTNBs +£(T;-T/:I)S: (14) 
i=/+l 1=1 

where (two-path transmittance): 

T;=(i-*0Tyr;(i5) 

Using the definitions of the previous equations, one can write: 

dR 
dX, ax, 

dR 
ax, 

(16) 
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In the current version of the UR algorithm, the following simplifying assumptions are made in the calculation of 

the derivatives: 

- Dependence of atmospheric transmittances on temperature is neglected in the calculations of the 

derivatives: 

az;/ae,=o        (i7) 

- Layer emission is computed as the average Planck emission for the layer: 

Bt = B; = Bl=(Bl
l+Bl)l2 (18) 

This approximation is adequate as long as layers are not optically thick, e.g. vertical pressure grid is sufficiently 

fine and no cloud is present. The trade-off between coarseness of the vertical sampling and the use of a more 

sophisticated approach such as linear-in-tau approximation has not been evaluated yet. It results from this 

approximation that dB,/dt,=0. 

1.4.2   Practical Implementation 

In a first pass, at any given wavenumber, the algorithm computes the profile of transmittance from space. The 

recursive procedure for the computation of radiances and analytical derivatives follows directly the last equation 

written above. 

1) Initialization: set 2^ = 0. 

2) If (l- £S)TN > 10"4, add layers successively from TOA down to surface. 

Update HJ at each step and compute first part of radiance derivatives. 
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dR_ 

3r, 
= -S7_,+5;T;_1 (19) 

-id 

and 

3R 
39, -fw-r«) (20) 

zj ^U+iV-X-iV,      (2i) 

3) Add surface term and compute derivative with respect to surface emissivity and temperature. 

«38. "  * ' 39. 
(22) 

and 

£ = TNB,-ITM/{l-e.)   (23) 

r„=ST„+VvB,      (24) 

4) Update 2* by adding layers from surface up to TOA and compute second part of derivatives. 

3T, 
=-z;+B,T,+ (25) 

and 

^ = ^L(T   -T)+ 
39,    39 V'-1     l) 

3R 
39, 

(26) 

It^It+pn-T,)]}, (27) 

5) Set Rv = EQ and compute derivatives with respect to temperature and layer amounts for all molecular species. 
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^-^z-xk?/,   m=\,...,M       (28) 
daf    drvl 

1.4.3   Microwave Cloud Liquid Water 

Cloud optical depths and their derivatives are computed in a subroutine that outputs a profile of cloud optical 

depth per layer and the derivatives of the layer optical depths with respect to two cloud parameters: total liquid 

water (0 and top pressure (p,). Cloud thickness (0) is held constant. Results are produced at the central 

frequency for each channel. 

The layer optical depths are computed as: 

'rßW/^     (29) 

where %y is the optical depth in layer y for frequency index i, kc is the mass absorption coefficient for liquid 

water, T} is the average temperature of the cloud within layer j, /is the cloud fraction within the field-of-view. 

A. 
The cloud proportion that is in layer y is represented by —-, where Ay is given in Table 2 and cloud base 

ispb= p,+@. If the entire cloud depth is within layer j, then A7= 0. The mass absorption coefficient is 

computed from the model of Liebe et al. [Liebe et ah, 1991], with the alternative, exponential formulation for 

the primary relaxation frequency dependence on temperature: 

?,=20.1exp(7.886)     (30) 

where: 

« = i-MJL (3„ 

The derivative with respect to total cloud liquid is given as: 

dt, -     A,. 

As a practical matter, the derivative is computed and then x is computed as Q—- 

The derivative with respect to cloud top is: 
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<Kv -      1 dA,. 
dp, 0 dp, 

The formulae for A and its derivatives are in Table 2. 

(33) 

Table 2: A and its Derivatives. 

Condition on layer j Aj 9A, 

dp, 

Outside cloud, except * 

Pj+i ^ P, or pb < Pj 

0 0 

Contains cloud top 

Pj ^P,^ Pj+1 ^ Pb 
Pj+i-Pt -1 

Entirely within cloud 

Pt ^ Pj ^ Pj+i ^ Pb 
PJ+i-Pj 0 

Contains cloud base 

Pt^Pj^Pb^Pj+i 
Pb-Pj 1 

Contains entire cloud 

Pj ^Pt^Pb^ Pj+i 

0 0 

* j+1 Contains entire cloud 

Pj+1 ^P,^Pb^ Pj+2 

0 -1 

* j-1 Contains entire cloud 0 1 
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